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1. INTRODUCTION

1.1. Market Games

The market game,both In its sidepayment and nosidepayment versions,

has provided a valuable tool for the utilization of game theoretic anal-

ysis for the study of exchange economies. It is known that exchange

economies map into totally balanced games forboth sidepayments and no-

sidepayments. It is known that totally balanced sidepayment games map

into exchange economies and it is conjectured, but not yet proved or

counterexampled, that every totally balanced nosidepayment game is re-

presentable by an exchange economy. ----- . ..

Clearly the mappings are not one to one in both directions, as

the market game contains far less information than does the exchange

economy.

The intimate relationship between exchange economies and totally

balanced games gives no intimation of the relationship of the competi-

tive equilibria to limit points of the core. In order to study this

property we need to be able to define a sequence of exchange economies

and a related sequence of totally balanced games. The result that we

can define a replication sequence of exchange economies and associate with

_*This work relates to Department of the Navy Contract N00014-77-C-0518

issued by the Office of Naval Research under Contract Authority NR 047-006.
However, the content does not necessarily reflect the position or the
policy of the Department of the Navy or the Government, and no official
endorsement should be inferred.

The United States Government has at least a royalty-free, nonexclu-
sive and irrevocable license throughout the world for Government purposes
to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.

I4 **We note that every subgame of a totally balanced game has a non-empty
core.



it a sequence of totally balanced games for which the cores converge

to the competitive payoffs Is an economic result arising from having

utilized the economic data to construct the sequence of totally balanced

games.

1.2. The Purpose of This Paper

A natural question to ask is are there other economic phenomena

which give rise to market games or "near-market games" and from which

one can construct a sequence of games which may or may not show core

convergence. Once we leave the simple structure of the exchange economy

a host of modeling difficulties appear. In particular even if core con-

vergence results are obtainable we must ask what is the economic inter-

pretation of such a convergence if no competitive price system exists

in the underlying economic model?

> In this paper ues'consider the relationship of market games

and near-market games to economies with complexities beyond that of the

exchange economy. Wiargue that a broad class of economies generate

near-market games, including private goods economies with non-convexities,

coalition production.economies, and economies with local public goods.

We also-suggest that economies with pure public goods do not, without

4special restrictions, give rise to near-market games.

More specifically, we say that a sequence of replica games is

a sequence of near-market games if the games are superadditive and the

*sequence satisfies a "near - minimum efficient scale for coalitions
w

property -- all increasing returns to coalition size are eventually

exhausted.

I
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We will show that the near minimum efficient scale property

ensures that the sequence is asymptotically totally balanced - given

any epsilon greater than zero and any aubgame of any game In the se-

quence, when we replicate the set of players in that subgame, for all

sufficiently large replications the epsilon-core of the replicated

*. subgame is non-empty.

A model of a sequence of replica economies with coalition pro-

duction and local public goods, where agents are allowed to be members

of possibly more than one jurisdiction is developed and the derived

sequence of games is shown to be a sequence of near-market games. Few

restrictions are placed on the model; the major ones are that the asymp-

totic growth of utility functions is no more than linear and the pro-

duction correspondences are such that positive outputs do not become

virtually free in per-capita terms as the economies become large.

When we further assume that all increasing returns to coalition

size are realized by some finite economy - there is a minimum efficient

scale of coalitions rather than a near minimwu efficient scale - we

obtain a core convergence result. The c-cores of the derived sequence

of games converge to the cores of the associated balanced cover games;

this result is also applied to show convergence of the c-cores to the

t| competitive payoffs for the Shapley-Shubik (1966) model. These results

depend on other results showing that: for all sufficiently large repli-

cations all payoffs in the 6-cores have approximately the equal

treatment property and; when there is a minimum efficient scale, the

limit of the c-cores equals the limit of the cores of the balanced



cover games. While an investigation of competitive equilibria (or

competitive-like equilibria since ye are dealing with a class of

economies to which the classic definition of the competitive equilib-

rium does not apply) and convergence of the core to the equilibrium

payoff s* is beyond the scope of this paper, we conjecture that the

minimum efficient scale property will enable stronger forms of con-

vergence than near minimum efficient scale.

Except under some very special conditions (satiation or "asymp-

totic" satiation, i.e., marginal utilities go to zero as the amount

of the public good increases) replica economies with pure public goods

do not generate near-market games. Since games derived from given

economies with pure public goods may well be market games (i.e., totally

balanced),~ this suggests that, in line with the incentives literature

it is when we consider sequene es of economies that game-theoretic

properties of private-goods or "market-like" economies and of pure

public goods economies differ.

Another question to be addressed is when is an economic situation

"oadequately" represented by the characteristic function of the derived

game? What is "adequate" is, to some extent, a matter of opinion and

*Some illustrations of such convergence are demonstrated in Boehm
(1974) for economies with coalition production and in Wooders (1980)
for ones with local public goods.

**See Rosenthal (1976).
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depends on the ultimate purpose of the model. For our purposes, we say

an economic situation has the uc-game" property* (i.e., in our view

is adequately represented by its derived game}oif what a coalition can

achieve once it has formed is independent of the actions of the compli-

mentary coalition. Exchange economies obviously have the c-game

property; ones with pure public goods might not. Ones with coalition

production and local public goods raise modeling and interpretation

problems concerning their "c-gameness"; this will be discussed

further later.

As indicated above, in this paper we analyze replication sequences

of economies -- ones with a fixed number of types of agents and increasing

numbers of agents of each type. To extend this analysis to economies with

a continuumof agents or with simply a "large" number of agents appears

to pose different problems than extensions of this nature for private

goods exchange economies. The technical results in this paper are based

on results concerning non-emptlaess of approximate cores of large replica

games and asymptotic balancedness of sequences of replica games. The

extension of the analysis to economies with a large number of agents (but
I

not necessarily replica economies) could, we believe, be carried out if

results were available for large (not-necessarily replica) games analogous

to those for large replica games. At this point, such results have not been

-

See Shubik (1982, pp. 130-131, 354).

*See Wooders (1981a) and Sbubik and Wooders (1282a).

- - - - - -. -
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obtained .Our purpose In this paper Is to introduce concepts of near-

market economies and near-market games; It is not to obtain the most

general results that might be possible.

The models are also restricted to ones with a freely transferable

med ium of exchange. There is reason to believe that such a restriction

b"*

is not necessary.

Table 1 in Section 1.3 provides a sketch of the different classes

of economies we consider here. In the remaining parts of this section

we provide a preliminary description of the different models noted In

Table 1. In Section 2 a mathematical structure and analysis for near-

market games is presented. Section 3 contains our model of a sequence

of replica economies whose derived games are near-market games. Section

4 deals with the application and interpretation of near-market games

together with a closer examination of the modeling problems involved.

All proofs are contained in the appendices.

1.3. The Framework of the Models

Both cooperative game theory and general equilibrium theory are

as noninstitutional as is feasible. An attempt is made to strip away

references to specific mechanisms. In particular both are resolutely

nondynamic. A description of dynamics calls for a specification of the

structure of the mechanism which carries the process, but this is

There Is reason to believe, however, that they are obtainable.

*In this regard, see Vooders (1982) and Shubik and Wooders (1982a,
1982b). The assumption of a freely transferable sedium of exchange simpli-
fies the analysis while allowing quite complex economic situations.

p.4



tantamount to adding institutional detail.

In essence, when the core of a market game associated with an ex-

change economy is studied the technical and institutional assumptions

which are made are that individual ownership of all economic goods is

• .recognized and that all goods can be transfered, without costs or techni-

cal difficulty, among all tndividuals. In particular, implicit in these

assumptions is that the economic reality can be well represented by the

characteristic function. Shapley and Shubik (1974) have suggested the

term "c-game" for a model that is adequately represented as a game by

its characteristic function and we use that term here. If trade and

coalition formation are costless it is easy to see that there are essen-

tially no modeling problems vitt exchange economies; what a coalition

S can achieve via exchange of goods among the members of S is indepen-

dent of exchanges carried out among the members of the complementary

coalition S

The introduction of indivisibilities or other nonconvexities does

nothing to influence the c-game property. It remains reasonable to assume

that a set S can exchange among its members in any way they desire,

even if the items are indivisible.

When we discuss the core here, we refer to the core of the market game

as contrasted with the set of undominated distributions of resources in
the distribution space of the economy which map into the core of the mar-
ket game. This distinction may not appear to be of much Importance when
considering exchange economies, but it is helpful when we consider more
general economies.



If we assume that production processes manifest constant returns,

then no distinction need be made between Individual or joint ownership

of the technology. The c-game property is preserved. An group S can

produce and exchange as it pleases regardless of the actions of T

Production and exchange without constant returns poses new prob-

lems. If the technology is commonly owned who gets to use if first now

matters. This can be avoided by makU.ng the reasonable assumption that

it is owned by groups. However if we now wish to consider replication

there is a temptation to Implicitly or explicitly introduce constant re-

turns to scale when doubling a coalition size.

Table 1 shows ten classes of models, the first of which is the

exchange economy. The interpretation of the six column headings is as

follows. Column 1, "the sequence generator,,.' refers to the class of eco-

nomic model being studied. When we wish to study mass behavior, in some

situations we can use the economic information present in the initial

economic model to generate a sequence of models which in turn are mapped

Into games. In other situations, as for example, in production economies,

we can take as given the production technology sets for all coalitions

of agents in the sequence of economies -- and thus avoid restricting

ourselves to constant returns when doubling the size of a coalition.

We then study solution behavior on the sequence of games.

Column 2 Indicates whether there are modeling problems in describ-

Ing the economic structure as a game in cooperative form.

Column 3 indicates whether the game formulated exhibits the c-game
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property; when it does not, this usually means that there are concep-

tual difficulties in utilizing the characteristic function as an

adequate representation of the economic structure.

Column 4 is used to note the type of game generated by the econo-

mic model.

Column 5 shows whether, in some appropriate uense,the core "shrinks."

There are two problems here; the definition of the meaning of the core

becoming small as dimensions change; but also the question of to what do

the core and e-core converge? in private goods exchange economies, or

private goods economies with constant returns, cores converge to competi-

tive equilibria. In ones with pure public goods, we have non-convergence;

the core does not shrink (Champsaur, Roberts, and Rosenthal (1975)).

For the other economies considered, we have "shrinkage" of the c-cores

to equal treatment payoffs and, with a minimum efficient scale assump-

tion, convergence of c-cores to cores of the associated sequence of

balanced cover games; while we suspect that these results will have

implications for competitive-like equilibria, at this point the economic

significance of these results is (with some exceptions) yet to be ex-

plored.

Column 6 notes what is known when Instead of considering sequences

of games with a finite number of players, we consider games with a con-

tinuum of economic agents. Although it is comforting to obtain old

results by new methods, if all that game theoretic methods were able to

do were to bolster the reasoning behind general equilibrium results this

would be a weak justification f or the development and application of a



TABLE 1*

Continuum
Core

Equivalence
Modeling Game to C.E. or

Sequence Generator Problems? c-Game Generated Convergence Lindahl
1 2 3 4 5 6

market game yes
1. Exchange Economies no yes (Shapley- (Debreu-
_.__Shubik,1969) 

Scarf,1963) (Aumann,1964)

Two-sided Markets with yes not
2a. Indivisibilities and no yes balanced (with money, considered

demand constraints _uinzii.1982) yet
Exchange Economies, -cores yes

2b. Nonconvex Preferences no yes -ala ildenbrand, -as-Colell
or Small Indivisi- 

(Shapley- (H

bilities Shubik,1966) Schmeidler, (1977)
Zamir- 19711

Production and Ex- yes yes
3. change Economies no yes market game (Hildenbrand, (Hildenbrand,

with Constant Returns 1968) 1974)
Production and Ex- near-market not con-
change Economies with yes gas yes, under sidered yet

4. Coalition Production yes and gs some (but se

without Constant no Woodrs,982b) conditions Oddou,1982)

. Returns _________ _ _ _ _ _ _ _ _ _ _ _

Production and Ex E-balanced yes, under
change Economies with not con-5.Setup Costs and no yes (Shubik, some sdered yet

tCapacities Wooders,1982b) conditions

c-balanced yes
E-core not con-

6. Local Public Goods yes and (Wooders, (Wooders, gidered yet

no 1980,1982) 1981b, 1982)1
in genera]

7. Pure Public Goods consider- no see below
___able

7a. Unanimity no yes market game no no

lb. Simple Majority no yes not balanced no no*b.Simle a oityno and no

- 7c. Minority Rights with can be made
Majority Voting yes yes balanced yes yes?

7d.not no (.Champsan
7d. Subgroup Use of Own balanced n ( pno

Resources yes ddres ] (Foley,1970) bertal, Ro- (Muench,1972)
__________________ _____ ed ________aenthal.fl7i

4 *The references mentioned are intended, at least in some cases, to be representative

of a body of work rather than comprehensive.

U-
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new apparatus. Yet it is easy to turn the use of the mathemtical

methods for studying games with a continuum of agents into a hunt for

* equivalence theorems establishing a coincidence between the payoffs

produced by the competitive equilibria or the Lindahi equilibria. This

is done, forgetting that the core and other game theoretic solutions

exist in situations where there is no price system.

With the caveat noted above, column 6 indicates where there are

core equivalence results.

For those classes of economies where core equivalence results

have been obtained, or counterexamples provided, it has been demonstrated

that the continuum models approximate models with a large, but finite,

number of agents -- with the exception of results for coalition pro-

duction without constant returns. Models such as Oddou's (1982) have

not been investigated as limits of finite replica models such as that of

Shubik and Wooders (1982b). After we formally introduce our model of

replication economies, in Section 4 we will discuss further the dif-

ferences between the finite replication models of coalition production

and models with a continuum of agents.

We now return to a discussion of the cases covered in the table.

By introducing setup costs, indivisibilities, and capacity constraints,

items all reasonably related to the functioning of a firm, we lose con-

vexity of the production sets and balancedness of the derived games.

However, if we constrain the production correspondences so that positive

outputs do not become virtually "free" as the economies grow large, we



obtain non-emptiness of c-cores and, if we further assume a minim=m

efficient scale for productive coalitions we set up the conditions for

the non-emptiness and convergence of c-cores.

Wooders (1980, 19818) and Shubik and Wooders (1982a, 1982b) have

shown that in essence the same mathematical approach can be applied to

local public goods and this investigation is continued in this paper.

However it must be stressed that the modeling problems involved in

describing how the production and distribution of a local public good

is to be decided upon become critical. In the models used previously

and in this paper, the c-game property is preserved between jurisdictions

but not necessarily within given jurisdictions. The feasible consumptions,

productions, and exchanges of the members of a collection of jurisdictions,

acting as a coalition, is independent of the actions of the complementary

collection of jurisdictions; this is because there are no "spill-overs"

of the public goods between jurisdictions. Within a jurisdiction, what

a subset of agents can consume can be affected by the actions of the

other members of the jurisdiction; the public goods are "pure" public

0 goods within the jurisdiction. However, from the viewpoint of the study

of the core, it is the c-gameness between jurisdictions that Is relevant.

When we consider pure public goods the modeling preliminary to

the calculation of the characteristic function is of central importance

In fact the development of the theory has been the other way around.
0 Local public goods economies have potentially the problems of coalition

production and also public goods problems (within jurisdictions). Thus,
insofar as the study of approximate cores is concerned, coalition pro-
duction economies are technically relatively easy to investigate.
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since the characteristic function must eubbdy the results of some rule

specifying the effects of the actions of the complementary coalition

on the members of a given coalition. Four methods are suggested here.

Under a unanimity rule only the group as a whole can act; such a game

is a c-game and is clearly totally balanced. The sequence of larger

games with a unanimity rule is such that all games maintain large

cores.

A frequently used decision rule is the simple majority vote.

But this rule with full taxing authority gives all to any winning coali-

tion. The game is a c-game in the sense that any coalition S can

guarantee everything for Itself if it is winning and can guarantee

nothing otherwise. This has no core.

In actuality in most societies a considerable body of law and

custom exist devoted to protecting minorities. Thus the winner is not

always in a position to take all. The specific structure of the minority

protection conditions will influence the characteristic function and it

may become possible to produce a balanced game even with majority voting

0 by an appropriate selection of the minority protection rule.

One may wish to avoid the specification of "political decision

methods" such as a vote in which case some economic usage argument must

be made for what a group of individuals can obtain. All of the problems

with coalition production are present in addition to the public good

distribution problem.

4 The fourth method is to specify that each subgroup use~s its own
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resources to produce the public goods for its own members, and any

potential production of public goods by the complementary subgroup

is ignored in the derivation of the characteristic function. It has

,. been generally assumed that all subgroups have access to the same

production possibility set--a closed, convex cone.

It is suggested that market games do provide an overall way of

* . considering a variety of economic structures, but that once we depart

from exchange economies or economies with constant return to scale in

production a host of modeling questions appear. As is suggested by the

headings ofTable 1 there are several other properties of economic sig-

nificance which may or may not be present along with the market game

property. The c-game property provides a check on the acceptability

of the model and the construction of a sequence of related games permits

us to examine the behavior of solutions based upon the characteristic

function, for large numbers.

.We note that cooperative game analysis based on the market game

appears to be of limited value in studying problems involving informa-

tion, oligopolistic competition, money or virtually any phenomenon where

the stress is clearly upon structure and process. For them the extensive

or strategic forms are called for. Even in situations noted in Table 1

where the c-game property holds, probably the most satisfactory

procedure is to model the economy explicitly as a game in strategic

form specifying, for example, a mechanism for price formation, voting

control of the corporation and the distribution of corporate profits.
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The point that must be stressed Is that uch of the relevance

and realism of the modeling has already been specified in the defining

of the characteristic function. If it Is unsatisfactory then there is

no reason to expect that the core will not reflect the inadequate represen-

tation. (This remark holds true for the value as well as any other

solution concepts based on the characteristic function).

We conclude this subsection with an example illustrating the

differences between the standard Von-Neuman-Morgenstern characteristic

function based on min max behavior and the Harsanyi characteristic

function, which reflects more of the threat structure between players.

Consider the two person game in strategic form shown below.

The Von-Neuman-Morgenstern characteristic function is

Strateg:Le. gt

Strategiem oflayer 2

Player 1 1 2

1 0, -60 100, 20

2 0,0 0, 0

given by*

v(d) - v(T) - 0

v(12) - 120

•The notation I represents the set containing player I only, etc.
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Let a stand for a strategy of player I , 1 -1, 2 , then

v(1) - max min P2(a1, 82)
8 8

1 2Sv(2) -max rmin P 2(811, s2)

a 81 2

v(1-2) = max max{PS(a, 82) +P 2 (81 , 82)1
81 82

with Pi denoting thepayoff toplayer i from theselection of (8I, 82)

The Harsanyi function however is calculated for a set of players,

and its complement (here as there are only two players, there is only

one calculation) as follows:

h(i) + h(2) - max max{Pl(81, 82) +P 2 (81, 82)1 - 120
81 82

h(l) - h(2) - max min{P1 (s, 62) -P 2(sl, 82)) - 60
8 1821I  2

which gives in this instance h(l) - 90 , h(2) - 30 , h(12) - 120

Rosenthal (1971) and others have also noted difficulties with the

characteristic function.

1.4. Near Markets

In the remainder of this paper we argue that for large economies,

with appropriate conditions essentially limiting the effects of external-

ities and indivisibilities, near-market games provide a valuable tool

for analysis of the first six cases described in Table 1. For nonlocal
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public goods we suggest that the physical conditions require a direct

modeling of the voting or other socio-political mechanism. This is

noted in discussion of cases 7a, b, c and d.

Even though our analysis is carried out in terms of games with

sidepayments we conjecture that if there exists a "quasi-transferable"

utility (i.e. a good which is divisible, always desirable and a sub-

stitute for any other good) our results hold substantially.

2. NEAR-MARKET GAMES

2.1. Games

We first review some game-theoretic concepts.

A game (with sidepayments) is an ordered pair (N,v) where

N = {l, ...,n} is a finite set, called the set of players and v is

a real-valued function mapping subsets of N into IR+ with v(O) - 0

Two players i and J are substitutes if given any subset S of N

where i f S and j V S , we have v(SU{i)) - v(SU{J}) . A subgame,

(S,v) of (N,v) is an ordered pair consisting of a non-empty subset

S of N and the function v restricted to subsets of S . The game

(N,v) is superadditive if for all disjoint subsets S and S' of

N , we have v(S) + v(S') < v(S US') . A payoff for the game is a

*This conjecture is based on the fact that analogous development of
approximate core theory has been carried out for games without side
payments (see Wooders (1981a) and Shubik and Wooders (1982a)) and
some results in the spirit of those herein have been obtained (see
Wooders (1980, 1982).
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vector B = (B1 ..., 3n) E R , the non-negative orthant of the n-fold

Cartesian product of the reals. A payoff B is feasible if N < v(N)

Given c > 0 , a payoff is in the (weak) c-core* if it Is feasible

and if, for all non-empty subsets S of N , .31> v(S) - cISI
iCS

where ISI denotes the cardinal number of the set S . When e - 0 ,

the c-core is called simply the core.

Given a game (N,v) , let (N,v) denote the totally balanced

cover of (11,v) ; the function v is the smallest real-valued function

such that, for all non-empty subsets S of N , the subgame (S.)

has a non-empty core and v(S) < V(S)

2.2. Sequences of Games

A sequence of games (Nr, v r)c 1  is superadditive if each game

(Nra vr ) is superadditive. It is per-capita bounded if there is a con-

stant K , independent of r , such that v r(Nr)/INrl I K for all r

Let (Nr , v)r= be a sequence of games where, for some positive

integer T, for each r the set of players N contains rT playersdenoted

by N = {(tq) : t-l, ...,T, q-1, ...,r) . For each r and each

t , let [t] m {(t,q) : q-l, ...,r) The sequence is a sequence of

replica games if

* * This concept was introduced by Shapley and Shubik (1966).
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(1) N N 1  for all r;
r l

(2) for each r and all subsets S of Nr , vr(S) V r(S)r Vr!

whenever r' > r ;

(3) for each r and each t all players in [t] are sub-
r

stitutes for each other.

Throughout the following, given a sequence of replica games

(N, v ) we define It] as above and call the members of [t]r
r rr-l rr

players of type t . We also assume there are T types of players

and denote the set of players Nr as above.

Given a sequence of replica games (Nr, v and a subset S
r r r-l adasbe

of Nr  for some r , define the vector p(S) - (sit ...'T) by its

coordinates st a Is n[t]rI ; the vector p(S) is called the profile

of S and is simply a list of the numbers of players of each type con-

tained in S . Let I denote the T-fold Cartesian product of the non-

negative integers. Observe that for any r and any subset S of Nr

we have p(S) E I . Also, since players of the same type are substitutes,

if S and S' are two subsets with the same profiles then for any r such

that S C Nr and s' C Nr , we have vr(S) - vr(S') . Consequently

the function vr can be completely defined by a mapping from a subset

of I to the reals. In the following,given r and a profile s of

a subset of Nr , we define v r(s) as v r(S) for any SC-Nr with

T
P(S) - s .* Given s E I we write 8 1  1 a since when P(S) - s ,

T twl

w we have IS1 - t

t-l

This abuse of notation should create no confusion. We note that we
typically denote subsets by upper case letters and profiles by lower

* case ones.
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We say a sequence of games satisfies the property of "near

minimum efficient scale" (for coalitions), WDES, if it Is per-capita

bounded. If the sequence is also superadditive, we say the sequence

is a sequence of near market games.

We remark that when a sequence of replica games is per-capita

bounded and superadditive, both v(Nr)/INrI and v(Nr)/tNrI converge

and to the same limit. In this case, for r sufficiently large, the

per-capita gains to forming a coalition larger than Nr are small.

This motivates our term "near-minimm efficient scale."

A sequence of replica games (N r , v r) r is asymptotically totally

balanced if, given any r , any subset S of Nr , and any c > 0,

there is an n* such that for all n > n* we have

V nr (Sn) Vnr(Sn)

where v denotes the function v , with r' - nr and S is anynr r n

subset of Nr, with (Sn ) - nP(S) . It can easily be verified (and
4n

follows from well-known results, cf. Shapley (19 6 7)), that given any game (N,v) ,

we have v(N)/INI - v(N)/INI < c if and only if the c-core of the game

is non-empty. Consequently, given any subset S of Nr  for some r and
lr

any sequence of subsets (S n) satisfying the properties required above,

for all n sufficiently large the subgames (Sn, Vnr) have non-empty

c-cores.
4
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The following Lheorem provides sufficient conditions for asymptotic

total balancedness of sequences of replica games.

Theorem 1. Let (Nr, v ) be a sequence of near market games. Then

the sequence is asymptotically totally balanced.

Proof. All theorems- in this section are proven In Appendix I,

2.3. Convergence of Cores

In the remainder of this section, we consider convergence proper-

ties of E-cores of sequences of replica games.

Our next theorem, informally, shows that as r goes to infinity

and c goes to zero, in "the limit," only equal-treatment payoffs are

in the c-cores wherean equal treatment payoff x for Nr has the property

that, for each t , xtq - xtq ' for all q and q'

Theorem 2. Let (Nr , V r- be a sequence of near-market

games. Then, given any 6 > 0 and any A > 0 , there is an c*

and an r* such that for all c E [0, c*] and for all r > r*

if B is in the c-core of (Nr, vr) then

l{(t,q) E Nr : ll tq-FtII > 6}1/r < X

where Bt r tq/r and 1111 denotes the absolute value.
q=1

Leas formally, Theorem 2 states that for small c and large

r , any payoff in the c-core has the property that the percentage

of players whose payoffs differ signIficantly (by more than 6 )

S
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from the average payoff for their type can be made arbitrarily small

(less than A We remark that since the theorem holds for C > 0 ,

it follows that for all sufficiently large r any payoff in the core

of the rth balanced cover Same has "nearly" the equal-treatment prQperty.

Given a sequence of replica games (N ) let B be an

equal-treatment payoff in the c-core of (N r, v ) for some r and some

c > 0 . Since, for each t , B B for all q and q' , B can

be completely described by a vector EER T where, for each t t tq

for (any) q . We say that I represents an equal-treatment payoff in

the c-core of (N, v) Given c > 0 , for each r let

8r (c) - {B EIR B represents an equal-treatment payoff in the c-core

of (N r , v r ) 1

Given E > 0 , let L(O()) denote the closed limit* of the se-

quence of sets (Br ()) . In the appendix it is shown this limit exists.**

Define A* - n L(B(c)) ; then A* is the asymptotic core of (Nr , v

Informally, A* is the limit of the c-cores and B* E RT is in the

asymptotic core if, given any E > 0 , there is a sequence (BrC
rr-l

0where VE B (c) for each r and r B* as r goes to infinity.
r r r

See Hildenbrand (1974), pp. 15-17 for a definition and some proper-
ties of the closed limit of a sequence of sets.
"* *This is Theorem 6 in Appendix 1.

0
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Given a sequence of replica games, (r, v ) let C(r) de-

note the subset of RI where each member C of C(r) represents an

equal-treatment payoff in the core of the balanced cover game (Nr, v d

Let L(C) denote the closed limit of the sequence of sets (C(r))'*-

We now state conditions under which L(C) exists and equals A*

We say a sequence of superadditive replica games (Nr , v r) 1 has a

minimum efficient scale for coalitions, MES, if there is an r* such

that for all r > r and r' > r* we have v (N r)/r - V r,(N ,)/r • We call

the replication number r* an MES bound (a minimum efficient scale bound).

We remark that if r* is an MES bound for the sequence, given r > r*

if B is a payoff in the core of (Nr, v ) then B has the equal-

treatment property; this is easily verified.

Theorem 3. Let (Nr, v ) be a sequence of near-market games. If the
r dfrth

sequence has the MES property, then L(C) exists and equals A*

To illustrate an application of this result

* recall that in Shapley and Shublk (1966), although it is conjectured that

for a class of private goods exchange economies, the weak c-cores

converge to the set of competitive payoffs of the concavified economy,**

Alternative formulations of MES are contained in Shubik and Wooders
(1982a) and Wooders (1981a).

S**An economy derived from the original economy when the utility functions

have been concavified.

6
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this is not proven. The concavified Same (i.e., the one derived from

the concavifled economy), is exactly the balanced cover game of the game

derived from the (non-concavified)economy. For the concavified economy

the competitive equilibrium exists and the cores of the concavified games

converge to the competitive payoffs. Since the sequence of derived games

satisfies the MES property, Theorem 3 applies and the limit of the c-cores

equals the limit of the cores of the balanced cover games. This limit

equals the set of competitive payoffs. Thus, the proof of Shapley and

Shubik's conjecture is a corollary to Theorem 3.

3. NEAR-MARKET ECONOMIES

3.1. Introduction to Near-Market Economies

In this section we develop a model of a sequence of replica econo-

mies with private goods, local public goods, and coalition production.

Minimal restrictions are imposed on the model yet we are able to show

that the sequence of derived games is superadditive and per-capita bounded

and thus is asymptotically totally balanced. Therefore, the class of

replication economies we consider are near-market economies--the de-

rived games are near-market games for large replications.

* 3.2. The Model

A sequence of replica economies (Er)o. 1 is defined as a sequence

of septuples

Er (N, Rt , ;, Ur' Wr' (Jr' Zr)' (Fr' Y r))
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where N ((,q) : t 1, ... ,T, q 1, ...,r) is the set of agents.
r

Nt I is the private comodity space;

W : is the public commodity space;

Ur _ {utq : (t,q) E N ) is an indexed collection of sublinear

utility functions mapping R. into N with the property that for

some linear function L and some real number c we have

u tq(x'y) < L(xy) + c for all (x,y) in Em+N t and for all (tq)

in N

wr = fw tq E Nt : (tq) E N r  is an indexed collection of ini-

tial endowment vectors, each in I (no public goods are initially

endowed);

(3r' Zr) is a pair of correspondences, where Jr , called the

allowable jurisdiction structure correspondence, maps non-empty sub-

sets S of Nr  into non-empty subsets of S and Zr , called the

public goods production correspondence, maps subsets S of Nr  into

subsets of IR x NR

and (F r, Y r) is another pair of correspondences where Fr , called

the allowable firm structures correspondence maps non-empty subsets

* S of N into subsets of S and Y , the private goods production
r r

correspondence, maps non-empty subsets S of Nr  into subsets of R

A number of further specifications are made on the components of

a sequence of replica economies:

(1) Nr  r+l for each r ;

(2) for each t , each q and q' in {q" : q" l, ...,r) , and all

0r . u - utq and wtq - wtq i.e., all agents of the same

type have the same utility functions and the same initial endowments.

Also, utq(w tq ) > 0 for all (t,q) E Nr  and for all r (this

6 assumption is for technical convenience);
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(3) Given r , S N r , and J(S) E Jr(S) , J(S) is an allowable

jurisdiction structure of S . Allowable jurisdiction structures J(S)

are required to satisfy the properties that

(a) S a U S' (allowable Jurisdiction structures of S
S'EJ(S)

cover S );

(b) if 3(S) E Jr(S) and J(') E Jr (S') , where S and S'

are non-empty, disjoint subsets of agents, then

{S" c Nr : S" E J(S) U J(S')) E 
3r(S US') ;

(c) given S C N and r' > r , if J(S) is in J (S) k then
-r r

J(S) is in J r,(S) ;

(d) if S and S' are non-empty subsets of Nr with the same

profiles, then there is a one-to-one mapping, say W , of

Jr(S) onto Jr(S') such that if *(J(S)) - J(S') , then the

collection of profiles of members of J(S) (not all neces-

sarily distinct), equals those of J(S')

We remark that in Wooders (1980) the allowable jurisdiction

structures of a set of agents was the set of all partitions of agents.

The present formulation of allowable jurisdiction structures is suf-

ficiently general to include the possibility that Jr(S) is the set

of all partitions of S and also to include the possibility of "over-

lapping" jurisdictions (an agent could possibly belong to several

jurisdictions simultaneously).

4

d
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The public goods production correspondence is required to satisfy

the properties that

(e) given S Nr  and r' >r, Zr(S)aZ ,(S)

(f) if S and S' are non-empty subsets of Nr for

any r , with the same profiles then

Z (S) = Z (S) , i.e. the production possibilityr r

set for a subset of N depends only on the profile
r

of that coalition;

(g) o E Zr(S) for all non-empty subsets S of Nr and for

all r

(4) Given a subset S of N , allowable firm structures F(S) E F r(S)

are required to satisfy the same properties as allowable Juris-

diction structures, i.e. (a), (b), (c), and (d) of (3) above.

Also, the private goods production correspondence is assumed to

satisfy the same properties as the public goods production cor-

respondence, (e), (f), and (g) above.

For private goods, we also define the aggregate production cor-

respondences. Given r and S C N , define

Y r (S) U - r (

F(S)EF r(S) StEF(S)

then r(-) is the rth aggregate production correspondence. Note

that Y r(.) is superadditive; given any two disjoint, non-empty sub-

sets S and S' of N , we have Y r(S) +Yr(S') aY (SUS')
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The above consists of a description of the components of a sequence

of replica economies and members of the sequence. In the following, we

introduce additional definitions which enable us to relate production

decisions to consumption decisions and to define feasible states of an economy.

An Nr-allocation is a vector (x,y) -ll Tr (x * Tr
Tr•k ,x q ... , , ,. .,

Er( m+ ) where (xtq ytq) is a commodity bundle for the (t,q)th

agent. Given any r and any non-empty subset S of N , an S-
r

5allocation is an Nr-allocation where xtq - 0 and ytq - 0 if

(tq) 9 S

Given r and a non-empty subset S of Nr , an S-prvate goods

production plan is a vector y E r(S)

It is possible, and obvious, that we could define an aggregate

public goods production correspondence analogously to the definition of

the aggregate private goods production correspondence. However, because

of the "non-transferability" of public goods produced in one jurisdiction

to the members of another jurisdiction, we proceed differently in defin-

ing public goods production plans. In particular, we keep track of the

jurisdiction structure associated with a public goods production plan.

Given a non-empty subset S of Nr , an S-public goods production plan

is an ordered pair, 4P(S) - (W(S), {(xs,, Zs,) C Zr(S') : S' E J(S)})

where J(S) E J r(S)

Given r and a non-empty subset S of Nr , an S-state of the

economy, e(S) , is an ordered triple, e(S) (y-, (P(S), (x.y)) where

y is a private goods production plan for S

4,
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(S) (J(S), (Xs,, Zs,) 6 Zr(S') :S' E J(S))) is an S-public goods

production plan, and (x,y) is an S-allocation where xtq 1 XS
tqCESS'EJ(S)

for all (t,q) E S (the (t,q)th  agent consumes the total outputs of

public goods produced in all jurisdictions of which he is a member).

The state is S-feasible if (Ytq _wtq) + z y - . An
(t,q)ES S'EJ(S)

I Nr -state of the economy is called simply a state of the rth economy,

or, when no confusion is likely to arise, simply a state of the economy.

Given S C Nr , let At(S) - {(x,y) : there is an S-feasible state

of the economy with the associated S-allocation (xy)) . The set Ar(S)

is called the set of S-attainable allocations. Wenote that if r' > r , then

ProjsAr(S) S Proj sAr,(S)

where ProjsA r(S) denotes the projection of the set Ar ,(S) onto the

subset of RISI(m+L) associated with the members of S for any repli-

cation number r"

3.3. The Derived Games

We now define the sequence of games derived from the sequence of

economies.
Given r and S c Nr  define vr(S) sup utq(xtq, ytq)

(xy)EAr (S) (t,q)ES

when S# . Define vr(S)- 0 when S - •

Observe that the pair (N r, v r) is a game with sidepayments. The

generation of a game with sidepayment s presumes, as usual, the existence of a freely
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transferable medium of exchange. There is no need to introduce this ex-

plicitly. It is straightforward to verify that the sequence of derived

games is a sequence of.replica games.

3.4. Near-Market Economies

Without further restrictions on the economies, in particular on

5production, there is no assurance that the derived sequence of games is a
sequence of near-market games. The restrictions required are, Informally,

that positive production does not become virtually free as the economies

become large. Formally, we assume

Al. There is a closed convex cone Y* CR1 with - Y* and

Y* niR = {0) , such that Y (S) C Y* for all subsets S of
+ r -

N and for all r.
r

A2. There is a closed convex cone Z*a R4 X R I with {01 x -R C

and Z* n It x EIR I {0} , such that for any r , any non-empty

subset S a N , and any allowable jurisdiction structure

J(S) S) , we have I (XS ,. zs,) E {(x,z) 1 RM+ k

* S'EJ(S)

(ISIx, z) E Z*} .

The first assumption is clear. The second is that there is some

* set Z* satisfying the properties of a standard private goods production

set and public goods are never cheaper per capita than private goods would

be if they were produced with the public set Z*

* An example of production correspondences which satisfy A2 in the

one-private-good, one-public-good case is given by the production functions

0
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x + z/IS -0 for each subset S of Nr and for all r with Jr(S)

equal to the set of partitions of S . Here the per capita costs of

the public good, in terms of the inputs, is constant and independent

of the size and composition of the jurisdiction structure.

To see what A2 rules out, suppose all coalitions have the pro-

duction set Z determined by the production function x+z - 0 , there

is only one private good and one public good, and again J r(S) is the

set of all partitions of S . To show that A2 Is not satisfied, let

Xr - 2/r and z - -(2/r) for each positive integer r . Observe

that (xr, zr) E Z(S) for all SaNr and for all r . Choose a

sequence of subsets S c N for each r such that IS I - r . We
r- rr

then have limIS rx -- 2 and lim z r 0 . This contradicts A2 since

Z, is closed and Z* n it; . 10)

The consequences of Al are described in Shubik and Wooders (1982b).

Together, the assumptions on Zr and Yr and the sublinearily

of the utility functions imply that the sequence of derived games is per-

capita bounded. Since the sequence of derived games is also superadditive,
4

it is a sequence of near-market games and asymptotically totally balanced.

Theorem 4. Let (E ) be a sequence of replica economies satisfying
r r-l

Al and A2. Then the derived sequence of replica games is a sequence of

near-market games and is asymptotically totally balanced.

In Appendix 2, we show that the derived sequence of games is

per capita bounded and superadditive. Theorem 4 then follows as a Cor-

ollary to Theorem 1. (All theorems in this section are proven in

Appendix 2.)
4
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3.5. Convergence of c-Cores

We nov impose a further restriction on production which will

have the result that the derived sequence of games has the )ES property.

This assumption ensures that there is a "minimum eff" lent scale for

production coalitions."

We require the following definition: given r and

(x,y) E A (Nr) a permutation types of (x,y) is an N -allocation,
r r r

say (x',y') where for each type t there is a one to one mapping

of (x tq, ytq) : q-l, ...,r) onto itself. Note that since (x,y)

is an N -attainable allocation, (xI,y') is an N -attainable alloca-
r r

tion.

A3. There is an r* such that for all positive integers n , given

r' a nr* for some n and (x,y) EAr (Nrt) , there is a permu-

tation by types of (x,y) , say (x',y') , and an

(x*,y*) E Ar*(Nr) where, for each (t,q) E Nr* , we have

u tq(x~tq, y~tq) > utlq(x,tt, )y for all (t',q') E Nr,

with t' - t and q' - q, 2q, ..., nq

Informally, A3 is the assumption that agents can do as well

for themselves in coalitions with profiles less than or equal to P(Nr)

* as they can in coalitions with profiles less than or equal to np(Nr*)

--increasing returns to coalition size are exhausted by economies with

profiles less than or equal to that of Nr*

• . .S. . . . .... ..
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Theorem 5. Let (E )r= be a sequence of replica economies satisfy-

ing assumptions Al to A3. Then the derived sequence of replica games

(Nr, Vr)OD has the MES property.

It is an immediate consequence of Theorems 2, 3, and 5, that

the c-cores of the sequence of derived games (Nr, v) converge
r r r-1 oveg

to the cores of the balanced cover games as r becomes large, i.e.

for the derived sequence of games A* - L(C) . (Since we have made

an MES assumption, only equal-treatment payoffs are in the cores of

the balanced cover games for sufficiently large replications. Theorem

2 ensures the convergence of the c-cores to equal-treatment payoffs.)

0

- - --
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4. The Framework Revisited

We begin this section by returning to the table in the Introduc-

tion.

In terms of the questions addressed in columns 1 to 6 of the table,

private goods exchange economies have desirable properties; the genera-

tion of sequences of replica economies is straightforward; the derived

games are totally balanced c-games (see Shapley and Shubik (1969) for games with

sidepayments and Billera and Bixby (1974) for ones without);convergence of the

core payoffs to the competitive allocations is well-known (see Shubik

(1959), Debreu and Scarf (1963), and, more recently, Anderson (1978) and

others). The continuum case was first studied by Aumann (1964); equi-

valence of the core and competitive equilibrium was attained.

Some of the above referenced results apply to exchange economies

with non-convex preferences and ones with indivisiblities; see also

for example, MasCollel (1977). Again, no serious problems arise.

Production and exchange with constant returns, both in the usual

sense of production sets with constant returns to scale and in the sense

of "constant returns to agents" also pose no significant conceptual

difficulties at this point in the development of economic theory. By

$"constant returns to coalitions" we mean that; for any disjoint coalitions

S and S' , Y(S) + Y(S') - Y(S US') where Y(-) is the production

correspondence, i.e. the production correspondence is additive. Repli-

cation production economies with constant returns where all coalitions

I
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had access to the same production sets were considered by Debreu and

Scarf (1963). A continuum model of a coalition production economy where

the production correspondence was additive was investigated by Hildenbrand

(1968, 1970, 1974) and subsequently others.

It is when we consider production without constant re-

turns that difficulties begin to arise. The questions of which agents

have access to what production sets become critical. Leaving aside ques-

tions of ownership, one can associate a production technology set with

each coalition of agents and consider the cooperative game form derived

directly from the economic data. Other authors, cf. Ishiishi (1977), and

Sondermann (1974) have made balancedness assumptions on the production

correspondence to obtain non-emptiness of cores and existence of equilibria.

In Shubik and Wooders (1982b) no balancedness assumptions are made. A

sequence of replica coalition production economies is developed and it

is shown that for all sufficiently large replications, approximate cores

are non-empty.

Within the context of replication models of coalition produc-

tion economies, no limiting core-equilibrium equivalence results have
I

been obtained except for that of Boehm (1974) who makes an assumption

of constant returns with respect to r to the productive coalition

{Nr } . When there are "increasing returns to coalition size" (i.e.

given a price system for private goods, the derived profit game is a

convex game) with a continuum of agents, Sondermann shows that the

core is in general larger than the set of competitive equilibrium payoffs.
I
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Oddou (1982), also using a continuum of agents, presents a convincing

argument that constant returns to coalitions is necessary for core-

equilibria equivalence.

We remark that no formal development of a coalition production

economy with a continuum of agents as the limit of a sequence of finite

economies has been undertaken. For the model in Shubik and Wooders

(19 82b),for large economies there are approximately constant returns

to scale to replication of those coalitions whichare associated with "near-

optimal" firms; the essential assumption is that positive outputs do

not become virtually free as the economy is replicated. However, if

one were to model the economies in Shubik and Wooders (1982b) as ones

with a continuum of agents in the limit, then the "limit economy"

would not necessarily have Oddou's constant returns property.

Some of the same observations as in the above apply to produc-

tion economies with set-up costs and indivisibilities. In particular,

the Shubik-Wooders result applies; for sufficiently large economies,

the derived games have non-empty approximate cores.

For production and exchange economies without constant returns,
I

including ones with set-up costs and capacities, under some conditions

convergence of c-cores to equilibrium payoffs can be demonstrated

(this result is not, at this point, in the literature but is fairly4

obvious).

In Wooders (1980) conditions are demonstrated under which economies

with local public goods and endogenous jurisdiction formation have non-
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empty approximate cores, and approximate "Tiebout-type" equilibria

whose associated states of the economy are in the cores, and core-

convergence results are obtained. This work is generalized in Wooders

- . (1981b, 1982).

As we discussed in the introduction, the modeling of private goods

exchange economies a$ games in characteristic function form is "natural"

--the economies have the c-game property. For "coalition economies,"1

cases 3-6, because production technologies are associated with groups

and because exclusion is possible (and also may well be desirable from

the point of view of optimality) in consumption of local public goods,

we have the set-up of a c-game; from the point of view of the study

of the core, the appropriate construction of the characteristic function

is obvious.

For pure public goods, as we have argued, additional specifications

must be made to construct the characteristic function. It needs to be

specified who has access to what technology (one could use a coalition

production model, for example) and what a coalition can consume of the

40 public goods produced by the complementary coalition. We note that the

case (7d), where the core has been most intensively studied, has a pes-

simistic characteristic function; the characteristic function is derived

so that each coalition benefits only from the public goods it produces.
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4.1 The Firm and Replication

The discussion above covers cases one through six in Table 1 although

cases 4, 6 and 7 are noted as posing modeling problems. The difficulties

with these three cases can be illustrated by examining the alternative

ways of replicating an extremely simple example.

We begin by utilizing a simple example to illustrate modeling dif-U
ficulties finessed by the assumption of group production and how to con-

struct a sequence of replicated economies given group production.

Suppose that an individual i has an initial endowment of

(1, 0, si) where the first item is an individually owned good which can

be used as an input to produce the second good. There is one firm which

produces the second good with a production function given by y - rx

n
where y is the output and x xt is the total input. The utility

ill

function of an individual i is given by Ui(xi i, )  y, where

n
y y i The ownership share of the firm By inaividual i is si and

i4l

n
" s i  1 . Let p be the price of the output and fix the price of the
i-li

input as one.

The manager of the firm will attempt to maximize

R = px - x where 0 < x i 1

and each individual i will attempt to maximize

S

S"
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yi subject to x + s8f J -

Thus xi - 1 and pv 2; hence 11 - n and y"

Now 0 < s, 1 thus, depending upon the distribution of shares an

individual i could obtain y where

I n+l

Suppose that the original economy was of size n1 m 9 with only

one type of agent. If a type has both utility functions and endowments

the same for all members we require that si - 1/9 . At this point we

have to decide how to describe the characteristic function for this gam

and furthermore we need to describe how to calculate the characteristic

functions for the games arising from the replicated economy.

AlVernative 1. Shares are ignored, any subgroup may use the technology.

Here the game is Immdiately inessential, the characteristic function*

is given by f(s) -s , s - 0, 1, ... , 9

This is equivalent to creating n independent technologies.

* For a type symmetric game instead of using the notation v(S) to stand
for the amount obtained by the sets of agents we can use f(s) where
a -jsI as all coalitions of the same size obtain the same amount.
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Alternative 2. A simple majority at least is required to operate the

firm. The game becomes

f(s) - O for a < n/2

- rs for n/2 < a < n

f(s)

3

5 9

VFIGURE 1

This game has no core as can be seen from Figure 1.

Alternative 3. Unanimity is required to operate the firm. The game

becomes

f(s) - 0 for 0 < s < n-l

- n for s - n

Here all imputations are in the core.

Alternative 4. Any simple majority can use the production function, but

it can only take the product in proportion to its shares

• f(s) - 0 for a < n/2
="2W for < a<n

n 2 e

* It is easy to check that this has a core.
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We now turn to replication. What do we mean by a replication of

the 9 agents, 1 firm economy? We may consider at least two types of

replication. In the first there is still one firm but we replicate the

number of agents and shares. Thus the endowments in the r threplication

become (1, 0, 1/9r) where although all individuals may have the same

number of shares as previously, the percentage ownership of the firm has

gone down by 1/r . In the second form of replication the firms are

Increased as well. At this point we may wish to consider the distinction

between giving all agents a portf olio in each firm, or enlarging the number of

types. For example, for one replication do we consider one type with

(1, 0, 1/2n, 1/2n) where the last two entries indicate shares in the

two firms or do we consider two types with (1, 0, 1/n, 0) and

(1, 0, 0, 1/n) ?

Replication 1. There is only one firm, regardless of the replication

number. The characteristic function becomes

f(s) -0 for s < nr/2

-r for nr/2 < s< nr

for the simple majority case. There is no core. Moreover. given any

E > 0 there is an n 0  such that for all n greater than no , the

game has an empty c-core. The sequence of games with n -1, 2,.,

is not a sequence of replica games since the payoff to a given coali-

tion eventually decreases as the set of players containing that

coalition becomes large.
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Replication 2a ("balanced portfolio")

f(s) - 0 for s < nr/2

w ris7r for nr/2 < a < nr

This sequence of games has cores or c-cores and is a sequence of replica

games.

Replication 2b (different types)

f(s1, s2, ...,~ sr  p Jp where 6j -1 if sj n/2

=-0 if sj /

r
and p-

jul

This sequence of games has a core or 1-core.

4.2. The Firm as a Local Public Good

We could reinterpret the example in 4.1 in terms of a local public

goods and endogenous jurisdictions. Consider an economy of size n with

a minimal size jurisdiction of 9 where each individual has an initial

endowment of (1,0) , the first item is a private good which can be

converted to a public good according to y - . The utility function

for each individual i is Ui(x,, y, s) - y/s where s is the number
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of individuals in a jurisdiction.

It is easy to see that this formulation leads to the formation

*.of as many 9 person jurisdictions as possible. If n - 0 mod 9 there

is a core, otherwise an c-core. Furthermore implicit in this formula-

tion is the idea that all individuals of the sam type have an equal

share of the jurisdiction to which they belong. Thus the analogue with

the corporate economy can'be completed by considering shares in juris-

dictions.

4.3. The Pure Public Good

The example noted in 5.2 can be extended to an example illustrat-

ing a pure public good by replacing Ui(x i ,y ) ff yip by U(xi, y) -

where y TZx.
I i

Suppose that no subgroup smaller than 9 can produce. Then

f(s) - 0 for s < 9

M s/s for s > 9

This game has a large nonconverging core. Note also that the sequence

of derived games does not satisfy the near-minimum efficient scale

property.

e
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APPENDIX 1

In this appendix, the theorems in Section 2 of the paper are

proven. Whenever possible, for the sake of brevity, we use results

currently available for sequences of replica games. Also, throughout

this appendix, the sequences of games are assumed to be sequences of

per-capita bounded, superadditive replica games.

For ease in notation, given a payoff a for a game (Nr, v d

and S C N we write a(S) for I atq  and, when S - {(t,q)} forr tqES

some (tq) E Nr , we write a(t,q) for a({(t,q))) .
,r

Given r and a profile s of some subset S c N , a sub-
-r

profile s' of s is a member of I (the T-fold Cartesian product

of the non-negative numbers) with s' < s . Let 1 denote the vector

of ones in I ; then, given r , we have P(Nr) - r.

When a sequence of replica games (Nr, v r)= 1  is superadditive

and per-capita bounded, it can be shown that for any r' , and any
profile s < P(Nr,) , the sequence of subgames (S , vr,) is

- r n nr nin

superadditive and per-capita bounded, where vnr, is the character-

istic function of the nrlth game and Sn is any subset of

Nnr , with profile equal to ns . Thus, to show that the sequence

(Nr, Vrr= is asymptotically totally balanced, we need only show that
Vr(Nr) V(N r)

the sequence is asymptotically balanced, i.e. lim - (-- - 11.

Then every subsequence of subgames (Svn V,) 1  as above is asymp-
n nr n n

* totically balanced.
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Observe that from Wooders [(1981a). Lea 8], the limits, as

r goes to infinity, of both v (N )/r and 7 (N )/r exist and arer r r r
*.. equal. This, and our observations above, prove Theorem 1. Also, this

theorem can easily be obtained as a consequence of Wooders 1(1981a),

Theorem 1].

Proof of Theorem 2

Given A and 6 greater than zero, select c* , r* , and

r' < r* so that:

(a) *r' <
r* 2'

(b) * > 0 and c* < mn{ fS }
V r(N r) V r (N r1) I <

(c) for all r > r' . rT r'T -- "

Since A > 0 and 6 > 0 , and since (Nr, v )00 is asymptotically

balanced, such a selection is possible.

Select any r > r* and let a be in the £*-core of (Nr, vr)

For each t , define at by W Q([t]r )/r and let a (a, ..., T)

It is easily verified that a represents an equal-treatment payoff in

the c*-core of (Nra v r ) so rel < v(N r ) and aes > V r(s) - C*IsI

for all subprofiles s of rl

Select a subset S' of Nr so that p(S') - P(N r,) and S'

contains the "worst-off" players of each type; i.e. if (tq) E S' ,
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then a(tq) < 0(t,q') for all (t,q') S ' . Suppose that

Is' A {(t',q) E [t']r : a(t',q) <- - )1 - r' for some type t' ;

i.e. all players of type t' in S' receive less than the average

payoff for players of that type minus 6

We then have v r (S') - c*r'T < a(S') < r' .l - 6r' < r- - 6r'

The first inequality follows from the fact that a is in the c-core

of (N r, vr ) . The second follows from the facts that r'at > a(S' A [tJr)

for each t and a(s' n[t') < r'cat, - r'6 . The final inequality

is from the feasibility of a ; we have a(Nr )/r - a.l < v(N r)/r

We now have

v(N_)
v (S') - c*r'T < r'--- - 6r'r r

Subtracting r(S') from both sides of the expression, adding 6r'

to both sides, and dividing by r'T , we obtain

6 v(Nr) (S')
". c* < r -

TrT r'

p(')= N(SO) =V(N_,

From the fact that p(S') - p(Nr,) , we have v ( (
r V(Nr) V r(Nr

From (b) above, - £* > C* . which implies (* < rT r'T

a contradiction to (c). Therefore, for each t' - 1, ..., T we have

Is' n {(t',q) E [t']r : a(t',q) < ' - 6fl <r'

From the facts that:
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Ca(S') > Vr(S ) - r'c* T

vr (Nr )
> al ;

rr - r rI I r -and - - r r - *

we have

0 < a-1 20T"
r< ? _ 2e*T.

Informally, this expression says that, on average, players of type

t in S' are receiving payoffs within 2c* of a for each t
t

Define V - {(t,q) E Nr : a(ttq) > t +61 and

W - {(t,q) E N : (t,q) J V U S'1 where S' is as defined above.r

Observe that

61V I < (c(tq) - a )
(t,q)EV

S(Ii - a(tq)) since
tqES'UW

(a(t,q) - t - 0

tqENr

From the preceeding paragraph and the above expression,

61V 1 _ c*r'T + (ii -
tqEW

Obviously, the larger the value of tq(Zt - a(t,q)) , the larger
tqEW

it is possible for lVI to be and still satisfy the above expression.

We claim that (at - *(t.q))(2ce*iWI . This follows from the fact
tqEW

that the players in S' of type t are, on average, within c* of

Mt and S' contains the 'worst-off" players of each type. Since
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the players in W are all "better-off" than those in S' w ye have

I - c(t,q)) < E*jW. Therefore 61VI <2c*r'T +2*IWI Since
tqCW t

-WI + r'T < rT , we have MV' <- rT - 6-

Then 1{(t,q) E N : qr< ren tl >6)j/rT <C JA..1 + JL i < +rI +,t rT rT - r 6

from (b) above.

The conclusion of the theorem follows from the observation that

if a is in the c-core of (Nr, vr) for r > r* and 0 < C < E*

then a is in the c*-core of (Nr, v .

Q.E.D.

Before proving the following theorem, we require some additional

notation. (See Hildenbrand (1974), p. 15 for the definitions of the

terms used.) Let Li(B(c)) be the lim inf of the sequence of sets

(Br(E)) =I and let Ls(B(c)) denote the lim sup. The closed limit

L(B()) exists if and only if Ls(B(c)) - Li(B(c)) , in which case

L(B(E)) - Li(B(c)) - Ls(B(c)) . Similarly, Li(C) and Ls(C) denote

the lim inf and the lim sup of C(r) respectively. Recall that for

'. any sequence of the sets, the lim inf is contained in the lim sup.

Since the sets C(r) and 8 (E) are all contained in a separable
r

metric space, IR with the sup norm, both Ls(C) and Ls(B(c)) , for

* any C , are non-empty.

See Hildenbrand (1974, p. 16). This can also be observed directly
I from Wooders I(1981a), the beginning of the proof of Theorem 2].

I
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m

Theorem 6. Given c > 0 . the closed limit of the sequence (B ())r rin

exists.

v(Nr)
Proof. Let a E Ls(B(£)) . It is easily verified that lim cTVOW r

v(N ) v(Nr )
< a.1 < lim r We first consider the case where a.1 < lin .

r r

Let (B ()) be a subsequence of ( ())" such thatr q r q= r r-1q q

for some a E 8 (c) for each r *we have a r a as r *r r q rq
q q q

Since, for each r , a *s > v (s) - EII for all subprofiles sq r -r
q q

of r 1q_ and for all r , we have a°s > v r(s) - c1s for all sub-q -- V(Nr)

profiles s of rl for all r . Since a-l < lim- , for
r-M

all r sufficiently large ra.l < vr(Nr) . Therefore a E Br(c)

for all r sufficiently large so a E Li(B(c))

r)
Suppose a-l - lim . Let a' E Ls(C) . Observe that

r- v(N r
rr

given any A E (0,1) , we have A(a' -cl)-l + (1-A)a *1 < lim r -AcT

yr (Nr)

Thus, for all r sufficiently large, A(a' -l).l + (l-<)l r

S Also, since a'.s > vr(s) and a-s > Vr(s) - cisi for all subprofiles

s of rl and for all r , we have (X(a' -cl)+(l-)a)-s > Aa'.s

+ (l-A)a-s - os > v r(s) - c1is for all subprofiles s of rl and

4 for all r . Therefore given A E (0,1) , for all r sufficiently

large, A(a' -£1) + (1-X)a is in B (c) . Consider the sequence (A )
_ r n ninl

where A -1 1 so A -o, Iand A (a' -cl) + (1-A )a convergesn n n n n

* to a as n - m . For each n , select r(n) sufficiently large so

6-
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that all r > r(n) , An(01-qi) + (l-;kn)a is in B(c) . Define

nnr

a = Xn('-Cl) + (I-Xn)a for all r with r(n) < r < r(n+l)

Then a E B (c) for each r and a a a so a is in Li(B())

Q.E.D.

Since L(B(c)) S L(B(c')) whenever c' > c and each L(B(c))

is non-empty and compact for c > 0 , the collection of sets

{L(B()) : c > 01 has the finite intersection property; therefore

A*

Proof of Theorem 3

First we show that L(C) exists. Let r* denote an IES

bound for the sequence of games.

Given r > r* , let a E C(r+l) ; we claim a E C(r) . Since

a.s > v(s) for all subprofiles s of (r+l)l , we have a*s > v(s)

for all subprofiles of s of rl . Also, since
vr(Nr) Vr 1 (r )r r r r+I(N +l = l , we have r(N ) = racl so a E C(r)

rr+l -01 ehaevr r-

Therefore C(r+l) c C(r) . Since C(r) is compact and non-empty for

each r n A C(r) 0 0 . Given these observations, it is routine to
r-l

verify that n C(r) - L(C) so L(C) # 0
r-l

Let a E L(t) . Given > 0, observe that as > vr(s) -CIs

for all subprofiles s of rl and for all r . Since
1%0

VW v (N)
.li .r =r.r. r r r a.l , for all r sufficiently large,r r
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- E C Br(C) . Since this holds for any c > 0 , a n n L(B(c)) A*

r E>0

Therefore L(C) C A*

Suppose the sequence (Nr, V ) has the NES property with
Vr(N) 

Vr(N)

iES bound r* . Let a E A* . Since >

v r ) (,(Nr) r - r
for all r and since r- -r for all r and r' sufficientlyq v(N) ~~~ r r' o l n 'sfiinl

Vr(r )  Vr,(Nr,)
Vr (Nr v r (Nr)

large, lim r r' for all r' sufficiently large. There-
r-r(N

r

fore a'i < r r for all sufficiently large r . Consequently,
-- r

if a V L(C) , for all r sufficiently large, for some S C N we-- r

have aQs < v r(S) where s - P(S) . But then for some c sufficiently

small, a.s < Vr (S) - cJSI which contradicts the assumption that a is

in A*

Q.E.D.
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APPENDIX II

In this appendix, Theorems 4 and 5 are proven.

Proof of Theorem 4

To prove the theorem, we need only prove that the sequence of

derived games is superadditive and per-capita bounded. It is straight-

forward to verify that the sequence is superadditive; thus we omit the

proof.

To prove per-capita boundedness of the sequence of games, we

construct another sequence of economies, say the *-economies, so that

the sequence of games derived from the *-economies, denoted by

(Nr, v)rIl , is per-capita bounded and has the property that for all

r and for all non-empty subsets S of N . we have v (S) < v*(S)r r -r

For the *-economies, we let Y* be the private goods produc-

tion possibility set available to all coalitions S C N for all r-- r

Observe that for any firm structures, say F r(S) and F'(S) we have

S'EF r(S) S'EF (S)

so the firm structure will be irrelevant. Of course, Yr (S) S Y*

and for any firm structure F(S) , I ¥* C ¥*
S'EF(S) -

Given r and a subset S of Nr , define Z*(S) (xz) E

(l.x, z) E Z*} Note that Z*(S) is a closed convex cone with vertex
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10} and {0) x -aC Z*(S) ; this follows from the assumptions on

Z* Let ip(S) - (J(S), {(Xs, zS,) E Zr(S') : S' E J(S)}) be an

S-public goods production plan. From assumption A.2, there is an

(xz) E Z*(S) such that

(a) for each (t,q) E S , we have L x < X
{S'EJ(S):(t,q)ES'}

and (b) ZS, < z.
S'UJ(S)

Informally, there is an (x,z) in Z*(S) "at least as good as" any

S-public goods production plan in the sense that with the production

possibility set Z*(S) , the agents can consume as much of the local

public goods while using no more of the inputs. (Note, however, because

agents do not necessarily have monotonic increasing preferences for the

local public goods, they may not prefer to have more of them.)

For the purposes of this theorem, we can restrict our attention

to states of the *-economies with associated jurisdiction structures

{{(t,q)) : (t,q) E Nr I since with this jurisdiction structure all agents

can be made "at least as well-off" as with any other jurisdiction struc-

ture. To see this, given any r and any non-empty subset S of N ,

let (x,z) E Z*(S) so (JSjx, z) E Z* and (x, z/lSI) E Z*({(t,q)})

for each (t,q) E S ; thus with the jurisdiction structure

({(t,q)) : (t,q) E N r } each agent in S can consume z and total

inputs are unchanged.

In the *-economies, the agents will all have the same utility

_ _ | " | ' -: . ..
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functions. For each r and for all (tq) E N , define u*tq(x,y)r

- L(x,y) where L is a linear function such that u tq(xy) < L(xy) + c

for some constant c for all (xy) E IR + and for all (tq) E N1

For each r and each non-empty subset S of N , let A*(S)
r r

denote the set of S-attainable allocations for the *-economies.

For each r and all non-empty subsets S of Nr define

vr(S) - sup [ L*(xtq, tq)
(xy)EA*(S) (t,q)ES

r

The finiteness of this "sup" is ensured by the linearity of the function

L* and boundedness of Ar(S) . Also,

sup L( I xtq ytq)
(x,y)EA*(S) tqES tqES

Let K be a real number such that K > v*(N1) . We will show
that K is a per-capita bound for the sequence of games (Nr, v*)

r' r rinl

Suppose not. Then there is an r' and a feasible state of the r'th

*-economy, say e*(Nr,) - (y, (J(Nr'). {(.Ss" zS) E Z*(S') : S E J(Nr)})

(x,y)) , such that L( I xtq v ytq) > Kr' . We can assume
tqEN r , tqENr ,

without any loss that F(Nr,) - {Nr,} and J(Nr,) {{(t,q)} : (tq) E Nr,•

Also, we can assume that xtq  x t'q' and ytq yt'q fan y - for all (t,q)
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and (t',q') in Nrt . We claim that there is an (x',y') E A*(N1)

with x'tq xtq and y'tq - ytq for all (t,q) i N1 , which will

yield a contradiction. Since e*(N ,) is feasible (for the Tth

*-economy), we have y E Y* Observe that W/r' E Y* . Also, for

some ztq for each (t,q) E N, , we have (xtq , ztq) C Z*({(t,q)1)

and

(ytq _wzt q M y so (ytq -tq) + ztq

(tq)ENr, (t ,q)CN , (t ,q)CN1  (t,q)CN1

i y/r'. This proves our assertion that (x',y') C A(N1) . But then

L ( I x'tq V I y tq) r LL( I xtq, q ytq) > K
(t,q)EN1  (t,q)EN1  (t,q)ENr, (tq)ENr

which is a contradiction. Therefore the sequence (Nr, v )r is

per-capita bounded.
Since utq(xy) < L(Uxy) t c for all (x,y) E x

and from the construction of the production possibilities set for the

*-economies, we have vr (Nr) < v*(Nr) + cINI for all r . Therefore

the sequence (Nr, v r)r= is per-capita bounded.

Q.E.D.

* *The vector ztq can he taken equal to z., when {(t,q)) S S' ,

where S' E J(N r ,)
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Proof of Theorem 5

Given 6 > 0 , r* satisfying the conditions of A3, and

r' M nr* for some positive integer n , there is an (x,y) E Ar ,(N,)

such that

yr t(Nr'i) <~ tq(xtq ytq) + 6

tq tq r t <

tqEN , tqENr,

Therefore, it follows that

v r , (N r, V r (Nr,)

rV - r

Since this holds for all positive integers n , we have

vr(N) v r(Nr)
lim T = TT

r r*

Since
z (N r) vr (Nr )

lira- lira-~
r r

r- r-

we have

r(N) vr* (Nrd

r r*
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vr(N) r r(Nr) vr(Nrd

Since < - for all r and since is non-decreasing,
r - r r

we have

vr (N) Vr* (Nr)
r - r for r > r*.

Q.E.D.

i'

I

4

a
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